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1 Draft status

This is a rough draft.
In this article notations are used accordingly:
http://www.mathematics21.org/binaries/rewrite-plan.pdf
Particularly (f)*Xd:ef{y | z€ X Az fy} for a binary relation f and a set X.
The motto of this article is: “Funcoids are filters on a lattice.”

2 Rearrangement of collections of sets

Let @ is a set of sets.
Let = be the relation on |J @ defined by the formula

a=beVXeQ:(aeXsbeX).

[TODO: Generalize it by the formula a =b< VX € Q: (a € atoms X < b € atoms X).|
[TODO: Reloids RLD(2(; B8) between posets 2l and B is F(atoms® x atoms™)?]

Proposition 1. = is an equivalence relation on | J @.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let a=bAb=c. Thenace X S beX s ce X for every X € Q. Thusa=c. O

Definition 2. Rearrangement R(Q) of @ is the set of equivalence classes of |J @ for =.
Obvious 3. |J R(Q)=U @.

Obvious 4. (¢ R(Q).

Lemma 5. card R(Q) <2094 €.

Proof. Having an equivalence class C, we can find the set f € 22Q of all X € Q) such that a € X
forallaeC. b=aVXeQ:(ceXebeX)eVXec@:(XefebeX) SoC={belJ Q| b=a}
can be restored knowing f. Consequently there are no more than card 22Q =242 classes. [

Corollary 6. If @ is finite, then JR(Q) is finite.
Proposition 7. If X €@, Y eR(Q) then XNY #0<Y C X.

Proof. Let XNY #0andz€ X NY. ThenyeY rz=yeVX'e@: (zce X' eye X)) =
(reXeyeX)syeX forevery y. Thus Y C X.
Y CX=XNY #0 because Y # . O

Proposition 8. If ) # X € Q then there exists Y € R(Q) such that Y CX AX NY #0.

Proof. Let a € X. Then [a] ={bely Q | VX' € Q:(ae X' ©beX)}={becJ Q| VX' € @:
beX'}C{bely Q |beX}=X. But [a] €eR(Q).
X NY #0 follows from Y C X by the previous proposition. ]
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Proposition 9. If X € @ then X =] (R(Q) N £X).

Proof. |J (R(Q)NZXX)C X is obvious.

Let € X. Then there is Y € RR(Q) such that x € Y. We have Y C X that is Y € #X by a
proposition above. So z € Y where Y € R(Q) N £X and thus z € |J (R(Q) N ZX). We have
XCl R(Q)NZX). O

3 Finite unions of Cartesian products

Let A, B be sets.

I will denote X = A\ X.

Let denote I'(A; B) the set of all finite unions X x YoU...UX,, _1 X Y,,_1 of Cartesian products,
where n € N and X; € A, Y, € B for every i =0,...,n — 1.

Proposition 10. The following sets are pairwise equal:
1. T'(4; B);
2. the set of all sets of the form (Jy . ¢ (X x Yx) where S are finite collections on A and
Yx € #B for every X € S,

3. the set of all sets of the form | J y . 4 (X x Yx) where S are finite partitions of A and Yx € #B
for every X € S;
4. the set of all finite unions U(X_Y)EU (X xY) where o is a relation between a partition of

A and a partition of B (that is dom o is a partition of A and im o is a partition of B).

5. the set of all finite intersections (,_, (X; x Y;UX; x B) where n€ N and X; € ZA,

Y, € #B for every i=0,...,n— 1.

..... n—1

Proof.

(1)2(2), (2)2(3). Obvious.

(1)C(2). Let QeT'(A4;B). Then Q=Xox YoU...UX,,_1 XY, _1. Denote S={Xo, ..., Xpn_1}.
We have Q= v, (X' xU {Yi | Xi=X"}) € (2).

(2)C(3)- Let Q= ycg (X x Yx) where S is a finite collection on A and Yx € B for every
X eS. Let

P= |J (X'xJ{yrx|XxesSnXx'CX})
X'eR(S)
To finish the proof let’s show P= Q.
(PYy{z}=J {Yx | X€SAX'CX} where z€ X".
Thus (P)*{z}=J {Yx | XeSAnzeX}=(Q)*{z}. So P=Q.

(4)C(3). Uxvyeo (X XY)=Uxecdome X xU{Y eZB|(X;Y)€0})€(3).

(3)E(4): Uxes X x¥x)=Uxes (X xU R{Yx [ XeSHNPYx))=Uyes X xU{Y'€
A{{Yx [ X eSH [V CYx})=Uxes X xU Y eR({Yx | X €5} [ (X;Y)eo}) =
U(X:Y)ea (X x Y) where o is a relation between S and R({Yx | X € S}), and (X;
Y')eoeY/CYy.

(5)C(3). Obvious.

(B)C(5)- Let Q=Uyes (X xYx)=U,_ ,_; (X;xY)) for a partition S ={Xo, ..., Xp—1}

of A. Then Q=[,_, (X: X Y;UX, x B). O

..... n—1

Exercise 1. Formulate the duals of these sets.
Proposition 11. T'(A; B) is a boolean lattice, a sublattice of the lattice Z(A x B).

Proof. That it’s a sublattice is obvious. That it has complement, is also obvious. Distributivity
follows from distributivity of &?(A x B). O
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I will denote FT'(A; B)={(A; B; F) | F € §T'[4; B]}.
Remark 12. It should be instead be denoted as (§FoT')(A; B) but for brevity I omit o.

4 Before the diagram

Next we will prove the below theorem 35 (the theorem with a diagram). First we will present
parts of this theorem as several lemmas, and then then state a statement about the diagram which
concisely summarizes the lemmas (and their easy consequences).

Obvious 13. up' ¢ fiPstf) f — (up f)NT for every reloid f.
Conjecture 14. 113(®) up? X is not a filter for some filter X € ST'(A; B) for some sets A, B.

Remark 15. About this conjecture see also:
e http://goo.gl/DHyuuU
e http://goo.gl/4a6wY6
Lemma 16. Let A, B be sets. The following are mutually inverse order isomorphisms between
ST(A; B) and FCD(A; B):
1. A |_|FCD up A,
2. frrup (B,

Proof. Let’s prove that up' 45 f is a filter for every funcoid f. We need to prove that PN Q €up f
whenever

P= ﬂ (X;xY;UX;xB) and Q= ﬂ (XjxY/UX]xB).

This follows from P € up f < Vi € 0, ..., n — 1: (f)X; CY; and likewise for @, so having
(H(X;NX})CY;NY] for every i=0,...,n—1and j=0,...,m — 1. From this it follows

(XinX) x (YinY/)U(X;NX;xB)D f
and thus PN Q €up f.
Let A, B be filters on I". Let |_|FCD up A = |_|FCD up B. We need to prove A = B. (The rest
follows from proof of the theorem 6.104 from my book [1]). We have: [TODO: Separate the first
equality below from theorem 6.104 into a separate lemma.|

FCD
A=[]{XxYUXxBeA|XePAY c B}

FCD
[ {XxYUXxB|XePA,YePBIPcAPCX xYUX xB} =
FCD
[ {XxYUXxB|XePAYePBIPcA(P)XCY} = (¥)
FCD

[ {XxYUXXB|XePAYePB,[|{(P)'X|AcupA}LY} =
FCD RLD
[1{X xYUX xB|XePAYePB,[|((PVX|Acuwp [ | wAGCY ) =

FCD RLD

[]{XxYUXxB| XEBZA,Ye@B,<(FCD)|_| upA>X;Y
CY

FCD FCD RLD
|_| XxYUXxB|XePAY e PB, |_|up|_|upA X =
FCD

FCD
|—| XxYU)TxB|X692A,YEBZB7<|—| upA>X;Y}



4 SECTION 4

(*) by properties of generalized filter bases, because {(P)*X | P € A} is a filter base.
(**) by theorem 8.3 in [1].
Similarly

FCD FCD
upB= |_| XxYUXxB | Xe@A,Ye@B,<|_| upB>XgY

Thus A=B. O
[TODO: For pointfree funcoids?|

Proposition 17. go feT'(A4;C) if f€'(4;B) and g €'(B; C) for some sets A, B, C.

Proof. Because composition of Cartesian products is a Cartesian product. g

Definition 18. go f=[TF"““ {GoF | Feup f,G eupg} for f€FT(A;B) and g€ FT(B;C)
(for every sets A, B, C).
We define f~* for f € FI'(A; B) similarly to f~ for reloids and similarly derive the formulas:
L (=1
2. (gof)t=f"tog™h

4.1 Associativity over composition
I will denote base (; 3) =2, core(2; 3) = 3 for a filtrator (; 3). [TODO: move above in the book]

Lemma 21. []%P up" 49 (go f)= (|—|RLD up'Bi%g) o (|_|RLD up! i) for every feF(I(A; B)),
g€F(T(B;(C)) (for every sets A, B, C).

Proof. If K€|_|RLD up i (go f) then K D GoF for some F € f, Geg. But Feup' 4B £ thus
RLD
Fe |_| upt(4:B) £

and similarly
RLD

Ge |—| up! (B g,

So we have

RLD RLD
KDGoFe |—| upl B9 ¢ |o |_| upl(AiB) £ .

Let now
RLD RLD
Ke |_| upF(B;C)g o |—| upF(A"B)f .

Then there exist F' € |_|RLD up" 4B fand G e |_|RLD up! (B9 g such that K D Go F. By properties
of generalized filter bases we can take F € up"’ 4% f and G e up" %9 ¢g. Thus K € upF(A;C)(go )
and so K € |_|RLD up' A (go f). O
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Proposition 23. (RLD);,(f LU ¢g) = (RLD)i, f U (RLD);y g for every funcoids f, g € FCD(A4; B).
[TODO: Move it above in the book.]

Proof. (RLD)i,(f U g) = |_|R|‘D {a xRP b | q € atomsSY), b € atoms¥ P, ¢ xFPH T F U g} =
|_|R|‘D {a xRLDp | a € atomsS™ b € atoms®(P), g xFCPp fVa xFCDbEg} :|_|RLD {a xRDp | ae
atoms®4) b € atoms®(B), ¢ xFCP p C f} U |_|R|‘D {a xR b a e atomsS, b e atomsS(5),
axFCDbEg}:(RLD)infLI(RLD)ing. O

Lemma 24. (RLD);j, X =X for X €eT'(4; B).

Proof. X =Xy x YoU...UX, x Y, = (Xo x P Yy) LFCP  LFCD (X, xFCDY. ),
(RLD);y X = (RLD)in(Xo xFP Yp) LR . LRLD  (RLD)i(X, xFP Y) =
(Xo xRDYg) LRLD  LRLD (X, xRLD Y ) = X x Yo U... U X, x Y, = X. 0

Lemma 25. |_|RLD up f = (RLD)in |—|FCD up f for every filter f € FT'(A; B).
Proof. (RLD)iu[T° f=[T""" ((RLD)in)*up f = (by the previous lemma)=[1""° up f. 0

Lemma 26.

1. f |—|RLD up f and A—T(A; B)Nup A are mutually inverse bijections between FT'(A; B)
and a subset of reloids.

2. These bijections preserve composition.

Proof. 1. That they are mutually inverse bijections is obvious.
RLD RLD RLD RLD RLD RLD
2. (M wpg)o (M up f) =17 {GoF|Fe[TT [,Ge[TT g} =[1"" {Go
FIFef Gegt=[1"" I/ Gor | Fef Geg)=TT" (g0 f). So [T
preserves composition. That A+ T'(4; B) Nup A preserves composition follows from properties of
bijections. O

Lemma 27. Let A, B, C be sets.
1. (|_|FCD upg)o (|_|FCD up f) :|_|FCD up(go f) for every f€FT(4;B), geF(B;C);

2. (up" B g) o (upF(A;B) f) = up' 4iB)(g o f) for every funcoids f € FCD(A; B) and
g €FCD(B:C).

Proof. It’s enough to prove only the first formula, because of the bijection from thereom 16.
Really: [1°° up(g o f) = [T up [T° up(g o f) = 7 wp(T* up g o [T up f) =

(FCD) (TR up go [T°P up f) = (FCD)TRP up g) o (FCD)TP up £) = (M up TR up g) o

(l—lFCD ulDI—IRLD upf):(l—lFCD upg)o(l—lFCD upf). 0

Corollary 28. (hog)o f=ho(go f) for every f € §(I'(A; B)), g FI(B;C), he FT(C; D) for
every sets A, B, C, D.

Lemma 29. I'(4; B)NGR f is a filter on the lattice I'(A4; B) for every reloid f € RLD(A4; B).

Proof. That it is an upper set, is obvious. If A, B€T'(A; B)NGR f then A, B€T(A; B) and A,
BeGR f. Thus ANBeT(4;B)NGR f. O

Proposition 30. If Y €up (/)X for a funcoid f then there exists A € up X such that Y eup (f)A.

Proof. YEup|—|3 {{f)A| A€upa}.
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So by properties of generalized filter bases, there exists A € upa such that Y €up (f)A. a
Lemma 31. (FCD)f= |_|FCD (T'(A; B)NGR f) for every reloid f € RLD(A; B).

Proof. Let a be an ultrafilter. We need to prove

FCD
<(FCD)f>a<|_| (N(4; B)NGR f>>a

that is
FCD FCD
< |_| up f>a < |_| (r(A;B)mGRf)>a
that is
5 5
[ (Fla= [ (F)a.
Feup f Fel'(A;B)Nup f

For this it’s enough to prove that Y € up (F')a for some F € up f implies Y € up (F”')a for some
F'eT(A; B)NGR f.

Let Y €up (F')a. Then (proposition above) there exists A € up a such that Y € up (F') A.

Y cup (AxFPCY UAXFP 1), (AXFPYUAXFPC XY =Y cup (FYX if 0£ X C A and
(AxFPY A XFP X =1 cup (F)X if X A.

Thus A x"FPY LA XxFP1TIF. So A xFPY UA xFCP1 is the sought for F. O

4.2 Relationships between (FCD) and (RLD)r

Definition 32. (RLD)r f = |_|RLD up! e fiDstf) ¢ for every funcoid f. I call (RLD)r as I-reloid
or Gamma-reloid.

Lemma 33. (FCD)(RLD)r f = f for every funcoid f.

Proof. For every filter X € F(Src f) we have ((FCD)(RLD)r f)X = HZSJEUP(RLD)HC (FYX =
§
HFeupF(Srcf;Dst nf <F>X
Obviously [° (FYX 3(f)X. So (FCD)(RLD)r f 3 f.

Feupl(Sre £3Dst ) ¢
Let Y €up (f)X. Then (propositiona above) there exists A € up X such that Y € up (f)A.
Thus A x Y UZA x 1 € up f. So ((FCD)(RLD)r f)X = [ (F)X C (A

Feupl(Sre fiDst §) ¢
YUZAx DX =Y. SoY € up ((FCD)(RLD)r £)X that is (f)Xegp«FCD)(RLD)p F)X that is
f 3 (FCD)(RLD)r f. O

X

Proposition 34. (RLD)r is neither upper nor lower adjoint of (FCD) (in general).

Proof. It is not upper adjoint because (RLD);y is the upper adjoint of (FCD) and (RLD)in # (RLD)r.

If (RLD)r is the lower adjoint of (FCD), then f J(RLD)r (FCD) f and thus f J(RLD);, (FCD) f.
But f C (RLD);, (FCD) f, thus having (RLD);, (FCD) f = f what is not an identity (take f=(=)|a
for an infinite set A). O

5 The diagram

Theorem 35. The following is a commutative diagram (in category Set), every arrow in this
diagram is an isomorphism. Every cycle in this diagram is an identity (therefore “parallel” arrows
are mutually inverse). The arrows preserve order, composition, and reversal (f+ f~1).
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funcoids

|—|FCD

up’
fe=fnr
funcoidal reloids filters on I"
|—|RLD
Proof. First we need to show that |_|RLD f is a funcoidal reloid. But it follows from lemma 25.

Next, we need to show that all morphisms depicted on the diagram are bijections and the
depicted “opposite” morphisms are mutually inverse.
That (FCD) and (RLD);, are mutually inverse was proved above in the book.

That |_|RLD and f+— fNT are mutually inverse was proved above.

That |_|FCD and up' are mutually inverse was proved above.

It remains to prove that three-element cycles are identities. But this follows from lemma 25.

That the morphisms preserve order and composition was proved above. That they preserve
reversal is obvious. g

6 Some additional properties

Proposition 36. For every funcoid f € FCD(A; B) (for sets A, B):
1. domf:ﬂg(A) (dom)*up"A:B) f;
2. im f:ﬂS(A) (im)*up" (B f.

Proof. Take {X xY | X € ZA,Y € ZA, X xY D f} Cup' AP . T leave the rest reasoning as
an exercise. 0

Proposition 37. (RLD)r f J(RLD)i, f 3 (RLD)out f for every funcoid f.

Proof. We already know that (RLD)i, f 3 (RLD)out f (see above in the book).
The formula (RLD)p f 3 (RLD);, f follows from VG € up! (Sr¢ fiPstf) f.q 3 f. O

Example 38. (RLD)r f 3(RLD)i, f 3(RLD)oys f for some funcoid f.

Proof. Take f=(=)|r. We already know that (RLD)i, f 3 (RLD)oyt f (see above in the book).
It remains to prove (RLD)r f # (RLD);y f.
Take F'=J, ., ([i3+ 1] x [i3i+1]).
Then F € f=up (RLD)i, f (because (F')a 3 (f)a for both principal ultrafilter a={i} and every
other ultrafilter a).
It remains to prove F ¢ up (RLD)r f.
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Suppose F € up (RLD)r = up |_|RLD up! Sre fiDstf) ¢ Then by properties of generalized filter
bases, there is F’ € up! ($7¢£Dstf) £ such that F D F’. Because F'C Usez (Fi+1]x [i;7+1]) and
F' 2 (=)|gr, there is a point g € [i;4+ 1] X [i;4 + 1] for each i € Z; thus, F' ¢ T'(Src f;Dst f).

Thus F ¢ up (RLD)r f. O

Theorem 39. For every reloid f and X € F(Src f), YV € F(Dst f):
1. X[(FCD)f] Y« VF eup"GrefDsth) £ ¥ [F] y;
2. <(FCD)f>X:l—llzveupF(Srcf;Dst Dy <F>X

Proof. 1. VE e up' S fiDstf) £ ¥ [F] Y < (by properties of generalized filter bases, taking into
account that funcoids are isomorphic to filters)<X [|_|FCD upt (Sre fiDst £) f1Y&e X [(FCD)f1Y.
2. |_|3 (F)a= <|—|FCD upl (Sre £Dst f) f)a={((FCD) f)a for every ultrafilter a.

Feupl(Sre £iDst ) ¢
It remains to prove that the function

5
©=AX €F(Src f): [ (F\Xx

Feupl(Sre f5Dst 1) ¢

is a component of a funcoid (from what follows that ¢ = ((FCD) f)). To prove this, it’s enough to
show that it preserves finite joins and filtered meets. [TODO: Definition of filtered meets.]

©0 =0 is obvious. ‘P(Il—l j) = HieupF(Src FiDst ) f (<F>I|—| <F>u7) = HieupF(Srcf;Dst Dy <F>I|—|
|_|3 (F)T=9pIUpJ. I Sis a generalized filter base of Src f, then ¢ |_|3 S =

Feupl(Sre 3Dst ) ¢
s S S 5 * S K
HFeupF(Srcf;Dst ¢ <F>|—| S:HFeupF(Src fiDst f) ¢ |—| <<F>> S:HFeupF(Src fiDst f) 5 |—|XeS <F>X:
5 s 5 s *
|_|X€S HFEupF(SrC ;iDst ) ¢ <F>X:|_|X€s X =[] (p)*s.
So ¢ is a component of a funcoid. g
Definition 40. @ f = |—|RLD up! e fiPst 1) £ for reloid f.
Conjecture 41. For every reloid f:
1. @f =(RLD);, (FCD) f;
2. @f=(RLD)r (FCD) f.

Obvious 42. @ f 1 f for every reloid f.
Example 43. (RLD)rf # &(RLD)oys f for some funcoid f.

Proof. Take f= idg%?]). Then, as it was shown above, (RLD)oytf =0 and thus @(RLD)gyt f = 0.
But (RLD)rf 3 (RLD)in £ #0. So (RLD)rf # B(RLD)out . O

Conjecture 44. (RLD)rf=m@(RLD);, f for every funcoid f.

Proposition 45. [TODO: Move it above in the book.] f C A xFPB< dom f C AAim f C B for
every funcoid f and filters A € §(Src f), B € §(Dst f).

Proof. fC A xFPB= dom f C A because dom(A x P B)C A.
Let now dom f =T AAim f C B. Then (f)X # 0= X % A that is f T A x P 1. Similarly
FE1xFPB. Thus fC A xFPB. O

Theorem 46. dom (RLD);, f =dom f and im (RLD);, f =im f for every funcoid f. [TODO: Move
it above in the book, remove the conjecture which this statement proves.|

Proof. We have for every filter X € F(Src f):
X Jdom (RLD);,f & X xRP 1 3 (RLD)inf < Va € F(Src f), b € F(Dst f): (a xFPHL f=
axRPHC X xRP 1) & Va € F(Sre ), b€ F(Dst f): (a xFPHE f=aC X);
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X Jddom fo X xRP 10 fex xFP 10 f o Vae (St f),be F(Dst f): (a xFPHE f=
axFPHC X xFP1) & Va e F(Src f),beF(Dst f): (a xFPHE f=aC X).
Thus dom (RLD);, f =dom f. The rest follows from symmetry. O

Proposition 47. dom (RLD)rf=dom f and im (RLD)rf =im f for every funcoid f.
Proof. dom (RLD)rf 3 dom f and im (RLD)rf 3 im f because (RLD)rf 3 (RLD);i, and
dom (RLD);, f =dom f and im (RLD);, f =im f.

It remains to prove (as the rest follows from symmetry) that dom (RLD)pf C dom f.

Really, dom (RLD)rf C |_|3 {X €updom f|X x1e€up f} :|_|S {X €updom f| X €
updomf}:ﬂgupdomf:domf. a

Conjecture 48. For every funcoid g we have Cor (RLD)r g = (RLD)r Cor g.

7 More on properties of funcoids
Proposition 49. I'(A; B) is the center of lattice FCD(A; B).
Proof. See theorem 4.139 in [1]. O

Proposition 50. up'(45) (A xFCP B) is defined by the filter base {A x B | Acup A, B €up B}
on the lattice I'(A4; B).

Proof. It follows from the fact that A xFPB=[1C {Ax B | Acup A, BeupB}. O
Proposition 51. up’(4i8) (4 xFCPB) = F(I'(A; B)) N (A xRLP B).
Proof. It follows from the fact that A x " PB=[1C {Ax B | Acup A, BeupB}. O

Proposition 52. For every fe€F(['(4; B)):
1. fo f is defined by the filter base {F o F' | Feup f} (if A= B);
2. f~lo f is defined by the filter base {F 1o F' | Feup f};
3. fo f~1is defined by the filter base {F o F~1 | Feup f}.

Proof. I will prove only (1) and (2) because (3) is analogous to (2).
1. It’s enough to show that VF',G €up f3H €up f: Ho H CGo F. To prove it take H=FTMG.

2. It’s enough to show that VF, G cup fAH cup f: H-'o HC G~ o F. To prove it take
H=FnNG. Then H' o H=(FNG) lo(FNG)CG 'oF. O

Theorem 53. For every sets A, B, C if g,h € §T'(4; B) then
1. fo(gUh)= fogU foh;
2. (gUh)o f=go fUhof.

Proof. It follows from the order isomorphism above, which preserves composition. O
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