MY ALGORITHM THAT SOLVES AN NP-COMPLETE PROBLEM IN POLYNOMIAL TIME, UNDER ASSUMPTION THAT P = NP

VICTOR PORTON

ABSTRACT. I present a particular polynomial-time algorithm that solves an NP-complete problem under the supposition that some such an algorithm exists (in other words, I present a constructive positive solution of P = NP under the assumption that P = NP).

1. INTRODUCTION

Fix any non-contradictory formal system, containing first-order predicate calculus (such as first-order predicate calculus or ZFC). Note that our formal system can be used to prove correctness of its own proofs (in polynomial time).

In this article I use the word “proof” exclusively either to denote proofs in our formal systems or to denote the proof presented in this article. I do not use it as a synonym of “certificate”. (However, certificates used are proofs.)

I present a particular polynomial-time algorithm that solves an NP-complete problem under the supposition that some such an algorithm exists (in other words, I present a constructive positive solution of P = NP under the assumption that P = NP).

The idea appeared as a synthesis from [3] and my own independently conceived [1]. A similar algorithm was first published in [2].

2. PROOF

I will call an NP-complete verifier an algorithm that verifies an NP-complete problem in polynomial time.

Obviously, if P = NP, then there exists some NP-complete verifier.

Let \(R(X) \) be the property, whether an arbitrary algorithm \(X \) (that takes any input data \(Y \)) produces a proof (in our formal system) of the statement (for every algorithm \(Y \))

\[
X(Y) = Z \Rightarrow \exists \text{algorithm } X' : X'(Z) = Y.
\]

I remind: \(X \) is in NP means that (for every \(Y \))

\[
X(Y) = Z \Rightarrow \exists \text{polynomial-time algorithm } X' : X'(Z) = Y.
\]
In the standard definition of NP we have the additional condition at the left side of the implication that \(Z = \text{true} \). But let us limit further consideration to such problems that \(X \) always halts; then we consider \(Z \in \{ \text{false}, \text{true} \} \).

So, \(X \) is an NP \(\Rightarrow R(X) \).

In the usual definition \(Z \) is taken to be one bit, but we could instead allow \(Z \) to be any polynomial amount of data, without changing concepts of \(R \) and of NP-complete.

Proof of the main result. Assume P = NP. Then my polynomial-time algorithm for the problem \(R \) for an input data \(X \) such that either \(R(X) \) or \(\neg R(X) \) is provable (This problem is NP-complete, for example, because finding proofs in our formal system is its special case.):

Let algorithm \(V(A) \) (of an input data \(X \)) be:

1. Run \(A \).
2. Check (by a known polynomial-time algorithm) that the step 1 produced either a proof of \(R(X) \) or a proof of \(\neg R(X) \). Return true, false, or unknown.

\(V(A) \) is polynomial-time if \(A \) is polynomial-time, because the output of step 1 is polynomial-size (dependently on \(X \)).

Our main decision algorithm \(M \):

Enumerating all algorithms \(A_n \) \((n \in \mathbb{N})\) run the algorithms \(V(A_n) \) on \(X \) in parallel (interleaving these algorithms, and before each step \(n \) of the loop adding \(A_n \) to our dynamic array (see below) of algorithms) until one of the “threads” \(F \) produces “true” or “false” (not “unknown”) (thus having a proof of \(R(X) \) or a proof of \(\neg R(X) \)).

The algorithm \(M \) halts, because there is a proof of \(R(X) \) or of \(\neg R(X) \) by the algorithm \(B = A_G \) for some fixed (assuming determinacy of our machine) \(n = G \) (by our supposition that there is an NP-complete verifier for provability of \(R(X) \) or what is the same for \(R(X) \)).

\(M \) solves \(R(X) \) because some algorithm \(V(A_n) \) solves \(R(X) \).

\(M \) is polynomial-time: \(G \) is fixed and \(B \) is polynomial-time (denote it \(C(B, C(X)) \) where \(C(X) \) is the size of \(X \)). So running time of our algorithm is bounded above (we can choose such a Turing-machine-equivalent computing environment that \(p(i) \) is non-decreasing) by

\[
\sum_{i=0}^{i=G+C(B,C(X))} p(i) \leq (G + C(B, C(X)) + 1)p(G + C(B, C(X)))
\]

where \(p(i) \) is the amount of steps in \(i \)-th main loop iteration (it polynomially depends on \(i \)).

Clarifications on parallelism:

By parallel, I mean interleaving algorithms with a fixed switch time. In terms of Turing machines, the term parallel can be defined through “virtual machines” (Turing machine simulating several Turing machines). The
algorithm is: create an algorithm that calculates a step of a ("virtual") Turing machine, use it to run the next step of \(v_0, \ldots, v_k, v_0, \ldots, v_k, \ldots \) (where \(v_0, \ldots, v_k \) is a dynamic array of Turing machines).

3. CONCLUSIONS

So, I’ve proved that a general solution of \(P = NP \) implies a specific solution that I’ve demonstrated.

The algorithm above is blatantly inefficient (at least it has a huge additive constant). So, it could not be used in modern practice.

It however can be useful as an argument to prove something other and/or as a “sketch” for an algorithm for some more particular problems. It could not be directly applied to a particular hard problem however, because the proof uses \(P = NP \) in an essential way.

My algorithm also can be optimized (however still remaining with a big additive constant) by somehow eliminating “bad” \(A_n \). This requires further research.

REFERENCES

Email address: porton@narod.ru