A conjecture about product order and logic

The considerations below were with an error, see the comment. Product order $latex {\prod \mathfrak{A}}&fg=000000$ of posets $latex {\mathfrak{A}_i}&fg=000000$ (for $latex {i \in n}&fg=000000$ where $latex {n}&fg=000000$ is some index subset) is defined by the formula $latex {a \leq b \Leftrightarrow \forall i \in n : a_i \leq b_i}&fg=000000$. (By the way, it is a […]

New theorem and conjectures

I have a little generalized the following old theorem: $latex (a\sqcap^{\mathfrak{A}}b)^{\ast}=(a\sqcap^{\mathfrak{A}}b)^{+}=a^{\ast}\sqcup^{\mathfrak{A}}b^{\ast}=a^{+}\sqcup^{\mathfrak{A}}b^{+}$. I have also found a new (easy to prove) theorem: $latex (a\sqcup^{\mathfrak{A}}b)^{\ast}=(a\sqcup^{\mathfrak{A}}b)^{+}=a^{\ast}\sqcap^{\mathfrak{A}}b^{\ast}=a^{+}\sqcap^{\mathfrak{A}}b^{+}$. The above formulas hold for filters on a set (and some generalizations). Do these formulas hold also for funcoids? (an interesting conjecture) See my free e-book.