I’ve proved yet one conjecture.

The proof is presented in this online article.

Theorem For every funcoid $latex f$ and filters $latex \mathcal{X}\in\mathfrak{F}(\mathrm{Src}\,f)$, $latex \mathcal{Y}\in\mathfrak{F}(\mathrm{Dst}\,f)$:

  1. $latex \mathcal{X} \mathrel{[(\mathsf{FCD}) f]} \mathcal{Y}
    \Leftrightarrow \forall F \in \mathrm{up}^{\Gamma (\mathrm{Src}\, f ; \mathrm{Dst}\,
    f)} f : \mathcal{X} \mathrel{[F]} \mathcal{Y}$;

  2. $latex \langle (\mathsf{FCD}) f \rangle \mathcal{X} = \bigsqcap_{F
    \in \mathrm{up}^{\Gamma (\mathrm{Src}\, f ; \mathrm{Dst}\, f)} f} \langle F \rangle
    \mathcal{X}$.

Leave a Reply

Your email address will not be published. Required fields are marked *