In the framework of ZF formally considered generalizations, such as whole numbers generalizing natural number, rational numbers generalizing whole numbers, real numbers generalizing rational numbers, complex numbers generalizing real numbers, etc. The formal consideration of this may be especially useful for computer…

read moreEarlier I proposed finishing writing this manuscript as a polymath project. But the manuscript contains (among other) this conjecture which can be reasonably separated into an its own detached polymath project.

read moreI propose to collaboratively finish writing my manuscript “Filters on Posets and Generalizations” which should become the exhaustive reference text about filters on posets, filters on lattices, and generalizations thereof. I have setup this wiki for this purpose.

read moreI removed this Knol. The development of “Filters on Posets and Generalizations” happens on wikidot.com instead. I decided to put my draft article “Filters on Posets and Generalizations” at Google Knol to be edited collaboratively by the Internet math community. The current…

read moreLet $latex U$ is a set. A filter (on $latex U$) $latex \mathcal{F}$ is by definition a non-empty set of subsets of $latex U$ such that $latex A,B\in\mathcal{F} \Leftrightarrow A\cap B\in\mathcal{F}$. Note that unlike some other authors I do not require $latex…

read moreFor filters on sets defined equivalence relation being isomorphic. Posed some open problems like this: are every two nontrivial ultrafilters isomorphic?

read moreA mathematician has said me that he cannot understand my writings because I introduce new terms without examples before. Because of this I added to my article Funcoids and Reloids (PDF) new subsection Informal introduction into funcoids. Hopefully now it is understandable….

read moreI abandoned my old blogs at my own site and moved to WordPress.com. This is my new math blog. Here I will tell about my math research.

read more