Attempt to generalize filter bases for more general filtrators
In this draft I present some definitions and conjectures on how to generalize filter bases for more general filtrators (such as the filtrator of funcoids). This is a work-in-progress. This seems an interesting research by itself, but I started to develop it as a way to prove this conjecture.
A conjecture about funcoids proved
WARNING: The proof was with an error! I have proved the following theorem: Theorem $latex \forall H \in \mathrm{up} (g \circ f) \exists F \in \mathrm{up}\, f, G \in \mathrm{up}\, g : H \sqsupseteq G \circ F$ for every composable funcoids $latex f$ and $latex g$. This theorem (being a conjecture at that time) was […]
A new theorem proved
I have proved $latex (\mathsf{RLD})_{\mathrm{in}} \Omega^{\mathsf{FCD}} = \Omega^{\mathsf{RLD}}$ (where $latex \Omega^{\mathsf{FCD}}$ is a cofinite funcoid and $latex \Omega^{\mathsf{RLD}}$ is a cofinite reloid that is reloid defined by a cofinite filter). The proof is currently available in this draft. Note that in the previous draft there was a wrong formula for $latex (\mathsf{RLD})_{\mathrm{in}} \Omega^{\mathsf{FCD}}$.
A typo in my math book
I’ve found a typo in my math book. I confused existential quantifiers with universal quantifiers in the section “Second product. Oblique product” in the chapter “Counter-examples about funcoids and reloids”.
More on generalized cofinite filters
I added more properties of cofinite funcoids to this draft.
Generalized cofinite filters
I have described generalized cofinite filters (including the “cofinite funcoid”). See the draft at http://www.math.portonvictor.org/binaries/addons.pdf
A new kind of product of funcoids
The following is one of a few (possibly non-equivalent) definitions of products of funcoids: Definition Let $latex f$ be an indexed family of funcoids. Let $latex \mathcal{F}$ be a filter on $latex \mathrm{dom}\, f$. $latex a \mathrel{\left[ \prod^{[\mathcal{F}]} f \right]} b \Leftrightarrow \exists N \in \mathcal{F} \forall i \in N : \mathrm{Pr}^{\mathsf{RLD}}_i\, a \mathrel{[f_i]} \mathrm{Pr}^{\mathsf{RLD}}_i\, […]
A different definition of product of funcoids
Definition $latex a \mathrel{\left[ \prod^{(A 2)} f \right]} b \Leftrightarrow \exists M \in \mathrm{fin} \forall i \in (\mathrm{dom}\, f) \setminus M : \Pr^{\mathsf{RLD}}_i a \mathrel{[f_i]} \Pr^{\mathsf{RLD}}_i b$ for an indexed family $latex f$ of funcoids and atomic reloids $latex a$ and $latex b$ of suitable form. Here $latex M \in \mathrm{fin}$ means that $latex M$ […]
I’ve solved a conjecture about pseudodifference of filters
I claimed earlier that I partially solved this open problem. Today I solved it completely. The proof is available in this PDF file.
Common generalizations of convergences and funcoids
I am reading the book “Convergence Foundations of Topology” by Szymon Dolecki and Frédéric Mynard. (Well, I am more skimming than reading, I may read it more carefully in the future.) After reading about a half of the book, I tried to integrate my theory of funcoids with their theory of convergences. And I noticed, […]