I updated Funcoids and Reloids article. Now it contains a section on oblique products.
It now contains also the following conjectures:
Conjecture $latex \mathcal{A} \times^{\mathsf{RLD}}_F \mathcal{B} \subset \mathcal{A} \ltimes \mathcal{B}$ for some f.o. $latex \mathcal{A}$, $latex \mathcal{B}$.
Conjecture $latex \mathcal{A} \times^{\mathsf{RLD}}_F \mathcal{B} \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}$ for some f.o. $latex \mathcal{A}$, $latex \mathcal{B}$. Particularly, is this formula true for $latex \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +\infty \right)$?
Conjecture $latex \left( \mathcal{A} \ltimes \mathcal{B} \right) \cup \left( \mathcal{A} \rtimes \mathcal{B} \right) = \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}$ for every f.o. $latex \mathcal{A}$, $latex \mathcal{B}$.