I’ve asked this question at math.StackExchange.com

Let $latex \delta$ be a proximity.

A set $latex A$ is connected regarding $latex \delta$ iff $latex \forall X,Y \in \mathscr{P} A \setminus \{ \emptyset \} : \left( X \cup Y = A \Rightarrow X \mathrel{\delta} Y \right)$.

**Conjecture** Set $latex A$ is connected regarding $latex \delta$ iff for every $latex a,b\in A$ there exists a totally ordered set $latex P \subseteq A$ such that $latex \min P = a$, $latex \max P = b$ and

$latex \forall a \in P \setminus \{ b \} : \left\{ x \in P \,|\, x \leqslant a \right\} \mathrel{\delta} \left\{ x \in P \,|\, x > a \right\}$.