About new theorems in in this my blog post:

I’ve simplified this theorem:

**Theorem** A reloid $latex f$ is complete iff

$latex f = \bigsqcap^{\mathsf{RLD}} \left\{ \bigcup_{x \in \mathrm{Src}\, f}

(\{ x \} \times \langle T \rangle^{\ast} \{ x \}) \, |

\, T \in (\mathscr{P} \mathrm{Dst}\, f)^{\mathrm{Src}\, f}, \forall x \in

A : \langle T \rangle^{\ast} \{ x \} \in G (x) \right\} $.

into

**Theorem** A reloid $latex f$ is complete iff $latex f=(\mathsf{RLD})_{\mathrm{out}} g$ for a complete funcoid $latex g$.

For a proof see this note.

The next theorem:

**Theorem** A funcoid $latex f$ is complete iff

$latex f = \bigsqcap^{\mathsf{FCD}} \left\{ \bigcup_{x \in \mathrm{Src}\, f}

(\{ x \} \times \langle T \rangle^{\ast} \{ x \}) \, |

\, T \in (\mathscr{P} \mathrm{Dst}\, f)^{\mathrm{Src}\, f}, \forall x \in

A : \langle T \rangle^{\ast} \{ x \} \in G (x) \right\} $.

collapses into

**Theorem** $latex f=\bigsqcap^{\mathsf{FCD}} \mathrm{up}\, f$, what I proved long time ago.

So, I have removed this theorem from my writings.

Finally, I add the conjecture:

**Conjecture** A funcoid $latex f$ is complete iff $latex f=(\mathsf{FCD}) g$ for a complete reloid $latex g$.

## One Response