**Conjecture** Let $latex S$ be a set of binary relations. If for every $latex X, Y \in S$ we have $latex \mathrm{up} (X \sqcap^{\mathsf{FCD}} Y) \subseteq S$ then there exists a funcoid $latex f$ such that $latex S = \mathrm{up}\, f$.

Skip to content
#
Math Research of Victor Porton

Several math research monographies

**Conjecture** Let $latex S$ be a set of binary relations. If for every $latex X, Y \in S$ we have $latex \mathrm{up} (X \sqcap^{\mathsf{FCD}} Y) \subseteq S$ then there exists a funcoid $latex f$ such that $latex S = \mathrm{up}\, f$.

## 1 thought on “Conjecture about funcoids”