I have developed my little addition to category theory, definition and research of properties of unfixed morphisms. Unfixed morphisms is a tool for turning a category (with certain extra structure) into a semigroup, that is abstracting away objects. Currently this research is…

read moreFrom this Math.SE post: It would be helpful to have a standard term XXX for “a category without the requirement of Hom-sets to be disjoint” and “category got from XXX by adding source and destination object to every morphism”. This would greatly…

read moreIn this blog post I introduced the notion of category with star-morphisms, a generalization of categories which have aroused in my research. Each star category gives rise to a category (abrupt category, see a remark below why I call it “abrupt”), as…

read moreI updated my online article “Funcoids and Reloids”. Now it contains materials which previously were in separate articles: Partially ordered dagger categories; Generalized continuity, which generalizes continuity, proximity continuity, and uniform continuity.

read more