In this blog post I introduced the notion of category with star-morphisms, a generalization of categories which have aroused in my research.

Each star category gives rise to a category (abrupt category, see a remark below why I call it “abrupt”), as described below. Below for simplicity I assume that the set $latex {M}&fg=000000$ and the set of our indexed families of functions are disjoint. The general case (when they are not necessarily disjoint) may be easily elaborated by the reader.

We need to prove it is really a category.

Proof We need to prove:

  1. Composition is associative
  2. Composition with identities complies with the identity law.

Really:

  1. $latex {\left( h \circ g \right) \circ f = \lambda i \in \mathrm{dom} f : \left( h_i \circ g_i \right) \circ f_i = \lambda i \in \mathrm{dom} f : h_i \circ \left( g_i \circ f_i \right) = h \circ \left( g \circ f \right)}&fg=000000$; $latex g \circ \left( f \circ m \right) = \mathrm{StarComp} \left( \mathrm{StarComp} \left( m ; f \right) ; g \right) = \\
    \mathrm{StarComp} \left( m ; \lambda i \in \mathrm{arity} m : g_i \circ f_i \right) = \mathrm{StarComp} \left( m ; g \circ f \right) = \left( g \circ f \right) \circ m &fg=000000$; $latex {f \circ \left( m \circ \mathrm{id}_{\mathrm{None}} \right) = f \circ m = \left( f \circ m \right) \circ \mathrm{id}_{\mathrm{None}}}&fg=000000$.

  2. $latex {m \circ \mathrm{id}_{\mathrm{None}} = m}&fg=000000$; $latex {\mathrm{id}_{\mathrm{Dst} m} \circ m = \mathrm{StarComp} \left( m ; \lambda i \in \mathrm{arity} m : \mathrm{id}_{\mathrm{Obj}_m i} \right) = m}&fg=000000$.

Remark I call the above defined category abrupt category because (excluding identity morphisms) it allows composition with an $latex m\in M$ only on the left (not on the right) so that the morphism $latex m$ is “abrupt” on the right.

Leave a Reply

Your email address will not be published. Required fields are marked *