Continuing this blog post: The set of all pointfree funcoids on upper semilattices with least elements is exactly a certain algebraic structure defined by propositional formulas. Really just add the identities defining a pointfree funcoid to the identities of an upper semilattice…

read moreA few seconds ago I realized that certain cases of pointfree funcoids can be described as a structure in the sense of mathematical logic, that is as a finite set of operations and relational symbols. Precisely, if a pointfree funcoid $latex f$…

read more