I’ve discovered a new kind of product of funcoids, which I call subatomic product.
Definition Let $latex f : A_0 \rightarrow A_1$ and $latex g : B_0 \rightarrow B_1$ are funcoids. Then $latex f \times^{\left( A \right)} g$ (subatomic product) is a funcoid $latex A_0 \times B_0 \rightarrow A_1 \times B_1$ such that for every $latex a \in \mathrm{atoms}\,1^{\mathfrak{F} \left( A_0 \times B_0 \right)}$, $latex b \in \mathrm{atoms}\,1^{\mathfrak{F} \left( A_1 \times B_1 \right)}$
This (subatomic) composition has the merit that for funcoids $latex f : A \rightarrow B$ and $latex g : A \rightarrow C$ the destination of product is $latex B \times C$ is the same as for categorical product in the category $latex \boldsymbol{\mathrm{Set}}$.
See This online draft article for details. There it is also proved that subatomic product exists.
2 thoughts on “Subatomic products – a new kind of product of funcoids”