Disclaimer: I am not a physicist.
Einstein has discovered that some physical properties are relative.
In this blog post I present the conjecture that essentially all physical properties are relative. I do not formulate exact details of this theory, a thing which could be measurable, but just a broad class of specific theories. Nevertheless the theory which I formulate in this blog post is mathematically exact.
Let be the set of (relative) physical properties. We will make
into poset by the order of which properties are more relative and which are less relative. (With the axiom that less relative properties may be always restored knowing more relative properties.)
Consider the filter characterizing positive infinity (that is infinitely least relative properties) on the poset
, that is the filter
defined by the base of all strict sets
where
and
denotes the principal filter induced by the element
(if such a base exists). Note that
is essential: Otherwise we could consider the principal filter
induced by the maximum element of
and the corresponding property would be absolute (non-relative).
My conjecture: The only really existing (non-relative) physical properties are values of relative properties on the filter .
Formally: The only really existing physical object is a monovalued reloid whose domain is the filter .
My theory may become into something verifiable by experiment if someone specifies what is exactly.
I’ve explained what the “positive infinity filter on a poset” means, and corrected some mathematical errors (or rather a vague explanation) in this blog post.