With subatomic products first mentioned here and described in this article are related the following conjecture (or being precise three conjectures):

**Conjecture** For every funcoid $latex f: \prod A\rightarrow\prod B$ (where $latex A$ and $latex B$ are indexed families of sets) there exists a funcoid $latex \Pr^{\left( A \right)}_k f$ defined by the formula

$latex x \mathrel{\left[ \Pr^{\left( A \right)}_k f \right]} y \Leftrightarrow

\prod^{\mathsf{\mathrm{RLD}}} \left( \left\{ \begin{array}{ll}

1^{\mathfrak{F} \left( \mathrm{Base} \left( x \right) \right)} & \mathrm{if}

i \neq k ;\\

x & \mathrm{if} i = k

\end{array} \right. \right) \mathrel{\left[ f \right]}

\prod^{\mathsf{\mathrm{RLD}}} \left( \left\{ \begin{array}{ll}

1^{\mathfrak{F} \left( \mathrm{Base} \left( y \right) \right)} & \mathrm{if}

i \neq k ;\\

y & \mathrm{if} i = k

\end{array} \right. \right) $

for:

- every filters $latex x$ and $latex y$;
- every principal filters $latex x$ and $latex y$;
- every atomic filters $latex x$ and $latex y$.