Suppose we have an (efficient) NP-complete algorithm. I remind that proving a provable theorem isn’t an NP problem, because there are theorems whose shortest proof is of super-exponential length. However, finding a proof that is below a given “threshold” length is an…

read moreI denote s(X) the size of data X (in bits). I denote execution time of an algorithm A as t(A,X). Using a Merkle tree technology similar to one of the Cartesi crypto (but with a true random number generator, and possibly the…

read moreI’ve found (and proved) an algorithm that is NP-complete in the assumption that P=NP. In other words, if P=NP has a positive solution, my algorithm is its solution. I was kinda afraid if I already have almost solved P=NP as an easy…

read moreI remind that I defined generalized limit of arbitrary function. The limit may be an infinitely big value. It allows to define derivative and integral of an arbitrary function. I also defined what are solutions of partial differential equations where such infinities…

read moreContinuing my research from general topology monograph Algebraic General Topology, the following new open problems arose: I remind that I define generalized limit of arbitrary function. This limit is defined in terms of funcoids. As I show in the Book 3, Algebra,…

read moreI’ve sent the final version of the first edition of my research monograph Algebraic General Topology. Volume 1 to Russian publisher INFRA-M and signed the publication contract. They are going to publish my book electronically. They also asked to send them a…

read moreI welcome you to the following math research volunteer job: Participate in writing my math research book (volumes 1 and 2), a groundbreaking general topology research published in the form of a freely downloadable book: implement existing ideas, propose new ideas develop…

read moreI am attempting to find the value of the node “other” in a diagram currently located at this file, chapter “Extending Galois connections between funcoids and reloids”. By definition $latex \mathrm{other} = \Phi_{\ast}(\mathsf{RLD})_{\mathrm{out}}$. A few minutes ago I’ve proved $latex (\Phi_{\ast}(\mathsf{RLD})_{\mathrm{out}})\bot = \Omega^{\mathsf{FCD}}$, that…

read moreI have proved the conjecture that $latex S^{\ast}(\mu)\circ S^{\ast}(\mu)=S^{\ast}(\mu)$ for every endoreloid $latex \mu$. The easy proof is currently available in this file.

read moreConjecture $latex \langle f \rangle \bigsqcup S = \bigsqcup_{\mathcal{X} \in S} \langle f \rangle \mathcal{X}$ if $latex S$ is a totally ordered (generalize for a filter base) set of filters (or at least set of sets).

read more